Viscosity Approximation Methods for * −Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
نویسندگان
چکیده
منابع مشابه
Approximation of endpoints for multi-valued mappings in metric spaces
In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.
متن کاملNonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings
In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...
متن کاملViscosity Approximation Methods for Nonexpansive Nonself-Mappings in Hilbert Spaces
Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let C be a nonempty closed convex subset of Hilbert space H , P a metric projection of H onto C and let T be a nonexpansive nonself-mapping from C into H . For a contraction f on C and {tn} ⊆ (0,1), let xn be the unique fixed point of the contraction x → tn f (x) + (1− tn)(1/n) ∑n j=1(PT) x. Consider also the iterati...
متن کاملViscosity approximation methods for nonexpansive mappings in CAT(0) spaces
The purpose of this paper is to study the strong convergence theorems of Moudafi's viscosity approximation methods for a nonexpansive mapping T in CAT(0) spaces without the property P. For a contraction f on C and t ∈ (0, 1), let x t ∈ C be the unique fixed point of the contraction x → tf (x) ⊕ (1 – t)Tx; i.e., x t = tf (x t) ⊕ (1 – t)Tx t and x n+1 = α n f (x n) ⊕ (1 – α n)Tx n , n ≥ 0, where ...
متن کاملGeneralized viscosity approximation methods for nonexpansive mappings
We combine a sequence of contractive mappings {fn} and propose a generalized viscosity approximation method. One side, we consider a nonexpansive mapping S with the nonempty fixed point set defined on a nonempty closed convex subset C of a real Hilbert space H and design a new iterative method to approximate some fixed point of S, which is also a unique solution of the variational inequality. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2020
ISSN: 2075-1680
DOI: 10.3390/axioms9010010